Inference in surveys with sequential mixed-mode data collection

Bart Buelens¹ and Jan van den Brakel^{1,2}

6th International Total Survey Error Workshop September 2012, Amsterdam

Statistics Netherlands, Department of Statistical Methods
 Maastricht University, Department of Quantitative Economics

Introduction

- Mixed-mode strategy Statistics Netherlands
- Problem with repeated surveys:
 - Mix of modes not constant
 - Different modes induce different measurement bias
 - Measurement bias not constant
 - Hampers comparability of statistics over time
- Purpose: inference method that stabilizes the measurement bias

Inference

• Generalized regression (GREG) estimator

$$\hat{t}_{y} = \sum_{i \in S} w_{i} y_{i}$$

- Weights w_i are derived from:
 - Sample design
 - Auxiliary information (linear model $y_i = \mathbf{\beta} \mathbf{x}_i + e_i$)

$$\hat{\mathbf{t}}_{\mathbf{x}} = \sum_{i \in S} w_i \mathbf{x}_i = \mathbf{t}_{\mathbf{x}}$$

Inference

Measurement error model

$$y_{im} = u_i + b_m \delta_{im} + \mathcal{E}_{im}, \quad m = 1, \dots p, \quad E_m(\mathcal{E}_{im}) = 0$$
$$\delta_{im} = \begin{cases} 1 & \text{if } i \text{ responds through } m \\ 0 & \text{otherwise} \end{cases}$$

GREG estimator under measurement error model $E_m \hat{t}_y = E_m \sum_{i \in s} w_i y_i = \sum_{i \in s} w_i (u_i + b_m \delta_{im}) = \hat{t}_u + \sum_{m=1}^p b_m \hat{t}_m$

Inference

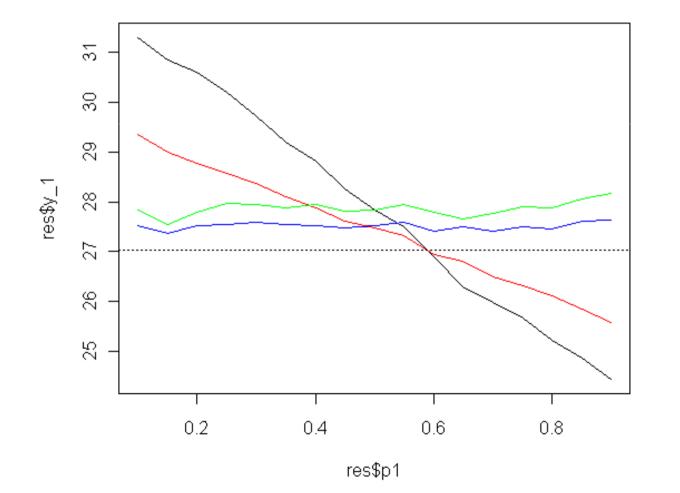
Mutations over time

$$\hat{t}_{y}^{(1)} - \hat{t}_{y}^{(2)} = \hat{t}_{u}^{(1)} - \hat{t}_{u}^{(2)} + \sum_{m=1}^{p} b_{m} (\hat{t}_{m}^{(1)} - \hat{t}_{m}^{(2)})$$
Requirement: $\hat{t}_{m}^{(1)} = \hat{t}_{m}^{(2)}$

Calibrate the sample to fixed distribution over the modes, i.e.

$$\hat{t}_{m}^{(x)} = \sum_{i \in s} w_i \delta_{im} = \Gamma_m, \ m = 1, ..., p, \ x = 1, 2$$

using arbitrarily chosen calibration levels Γ_m


Assumptions and risks

- Correcting for measurement bias: $\hat{t}_y \neq \hat{t}_y^c$ under the assumption that $\hat{t}_u = \hat{t}_u^c$
- Assumption: Auxiliary variables other than mode correct for selection bias
- How to check:
 - For additional register variables (z): $\hat{t}_z \approx \hat{t}_z^c \approx t_z$
 - Apply different calibration levels for Γ_m and analyze the effect on $\hat{t}_v^{(1)} - \hat{t}_v^{(2)}$

- population N=100,000
- subpopulations, x=1 en x=2, equal size
- Target variable: u u(x=1)~N(20,3) u(x=2)~N(30,3)
- 2 response modes m (m=1 en m=2)
- Selective nonresponse depends on mode and strata
 - p(respons=1 | m=1, x=1) = 0.8
 - p(respons=1 | m=2, x=1) = 0,2
 - p(respons=1 | m=1, x=2) = 0,4
 - p(respons=1 | m=2, x=2) = 0,6

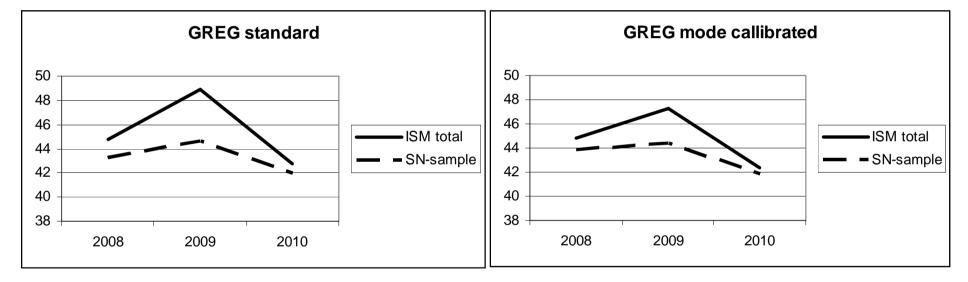
- y measurement for u, with measurment bias:
 m=1: y=u, m=2: u = u + 5
- Sampling under varing mode distributions: Proportions m=1 / m=2: 5% / 95%, 10% / 90%, ..., 95% / 5%
- For each sample 4 estimators for population mean:
 - 1. unweighted
 - 2. weighting model: ~ x
 - 3. weighting model: ~ x + m (m1=50%, m2=50%)
 - 4. weighting model: ~ m

Estimation results y

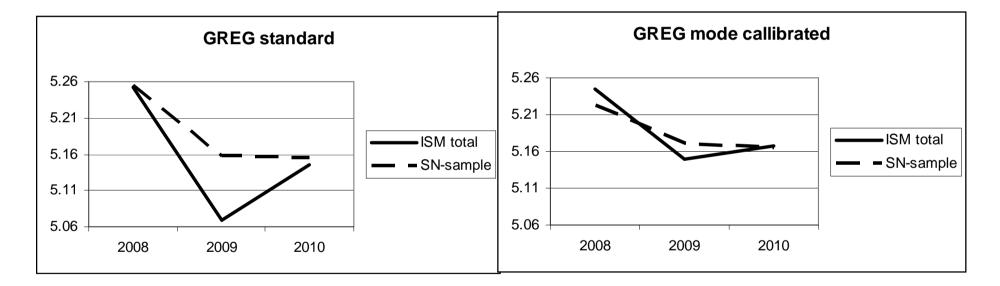
Black: ~ 1 Red: ~ x Blue: ~ x + m Green: ~ m (dotted: pop. y)

Survey design

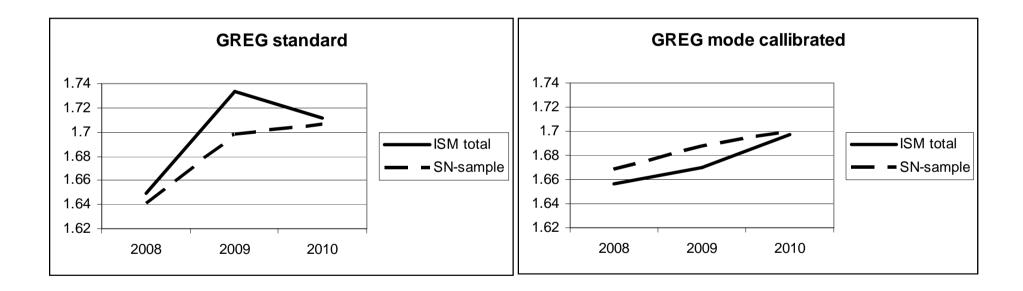
- National sample of SN:
 - Yearly sample size: 19,000 respondents
 - Data collection: CAWI/PAPI, after 2 reminders CATI/CAPI
- Additional regional samples:
 - On request of local regional authorities, optional
 - Yearly sample size varies between 20,000 and 180,000 persons
 - Data collection: CAWI/PAPI and after 2 reminders CATI
- Official releases: total sample


Results data collection

		2008	2009	2010
SN-sample	sample size	17,000	19,200	19,200
	WI	40%	47%	49%
	PAPI	15%	16%	13%
	CATI	34%	26%	24%
	CAPI	11%	11%	14%
ISM-total	sample size	62,800	201,200	39,200
	WI	56%	69%	61%
	PAPI	11%	12%	12%
	CATI	27%	17%	20%
	CAPI	6%	2%	7%

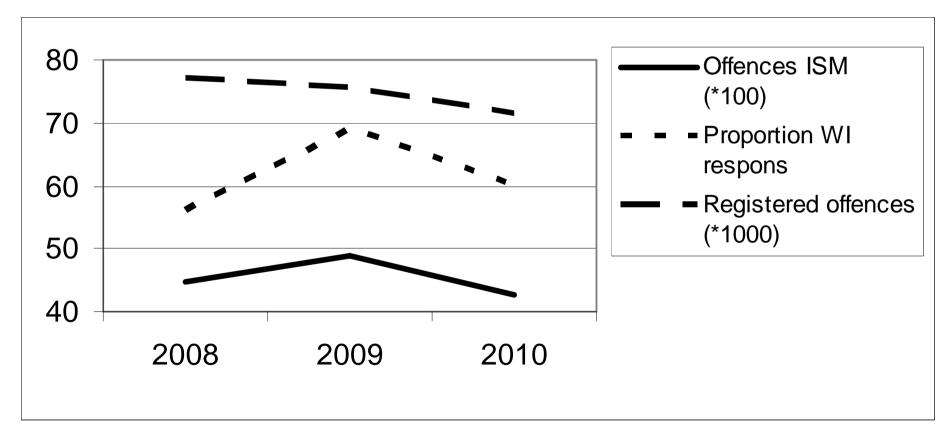

Mode calibration

- Cross mode with strata (25 police regions)
- Collapse four modes in two classes
 - Interviewer administered modes
 - Modes without interviewer
- Levels based on the expected distribution of Statistics Netherlands' national sample:
 - 40% capi/cati
 - 60% cawi/papi
- Weighting model extended with:
 - Mode(2)*Strata(25)

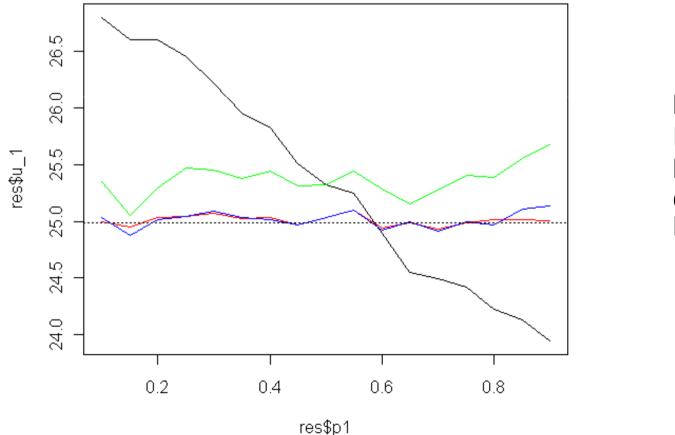

Results Offences

Results Satisfaction police functioning

Results Anti social behavior



Discussion


- Calibrate the response in sequential mixed modes designs to fixed mode distributions to remove variation in measurement bias
- Assumptions:
 - model removes selection bias
 - partially tested with correlated register variables
 - motivated with a simulation
- Evidence that mode calibration stabilizes estimated mutations of the ISM
- Used to produce official statistics in the ISM and household transportation survey

Thank you for your attention

Relation offences and prop. WI in the Dutch safety monitor

Estimation results u (no measurement bias)

Black: ~ 1 Red: ~ x Blue: ~ x + m Green: ~ m Dotted: pop. u

19